Devoir maison nº 4

À rendre le vendredi 18 octobre

Extrait d'un rapport du jury du CCINP: « Le futur candidat doit s'appliquer à donner tous les arguments, même simples, conduisant à une conclusion. Nous lui conseillons de s'approprier petit à petit le cours par la pratique des exercices et des problèmes, de travailler les techniques habituelles et surtout de s'entraîner régulièrement à rédiger des questions de manière claire, explicite et structurée. »

Exercice 1. Une fonction définie à partir d'une intégrale (d'après CCINP 2023)

Ce problème traite de l'étude d'une fonction définie par une intégrale. De telles fonctions apparaissent dans de nombreux domaines d'applications : automatique, traitement du signal, etc.

On s'intéressera en particulier au calcul de certaines des valeurs de cette fonction, à ses variations, ainsi qu'à son comportement asymptotique.

Partie I - Définition de la fonction

- Q1. Pour quelles valeurs de $\alpha \in \mathbb{R}$ l'intégrale $\int_0^1 t^{\alpha} dt$ est-elle convergente? Calculer alors sa valeur en fonction de α .
- **Q2.** Un nombre réel x étant fixé, donner un équivalent (sous la forme d'une puissance de t), lorsque t tend vers 0^+ , de la fonction définie sur]0;1] par $t\mapsto \frac{t^{x-1}}{1+t}$.
- **Q3.** En déduire que l'intégrale $\int_0^1 \frac{t^{x-1}}{1+t} dt$ converge si et seulement si x > 0.

On définit alors sur $]0; +\infty[$ la fonction f par $f(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt$. La suite du problème a pour but d'étudier certaines propriétés de la fonction f.

Partie II - Valeurs de f(n) pour $n \in \mathbb{N}^*$

Q4. Montrer que $f(1) = \ln(2)$, puis que $f(2) = 1 - \ln(2)$. On pourra remarquer que, pour tout $t \in [0; 1]$,

$$1 - \frac{1}{1+t} = \frac{t}{1+t}.$$

Q5. On admet que, pour tout entier $n \ge 2$:

$$f(n) = (-1)^{n-1} \ln(2) + (-1)^n \sum_{k=0}^{n-2} (-1)^k \frac{1}{k+1}.$$

Écrire une fonction python d'entête def f_entier(n): qui calcule f(n) à partir de cette formule et renvoie la valeur de f(n), pour $n \in \mathbb{N}^*$.

On importera la fonction log (pour ln) de la bibliothèque numpy.

Partie III - Limite de f en 0

Q6. Montrer que, pour tout x > 0 et $t \in [0;1]$:

$$\frac{t^{x-1}}{2} \leqslant \frac{t^{x-1}}{1+t} \leqslant t^{x-1}.$$

En déduire que, pour x > 0:

$$\frac{1}{2x} \leqslant f(x) \leqslant \frac{1}{x}.$$

- **Q7.** En déduire la limite de f en $+\infty$ ainsi que la limite de f en 0.
- **Q8.** Tracer l'allure de la courbe représentative de f dans un repère orthonormé. On placera en particulier les points de cette courbe d'abscisses 1 et 2 (on donne $\ln(2) \approx 0.7$).

Partie IV - Équivalent de f en $+\infty$

- **Q9.** Montrer que, pour $x \in]0; +\infty[, f(x) + f(x+1) = \frac{1}{x}.$
- **Q10.** On admet que f est décroissante sur $[0; +\infty[$. Montrer que, pour x > 1:

$$f(x+1) + f(x) \le 2f(x) \le f(x) + f(x-1).$$

Q11. En déduire un équivalent de f en $+\infty$.

Exercice 2. [Facultatif]

On reprend les notations de l'exercice précédent, notamment la définition de la fonction f donnée à la fin de partie I.

Il s'agit ici de démontrer les deux résultats admis dans l'exercice 1. Plus précisément, dans une première partie on démontre l'égalité admise en $\mathbf{Q5}$, puis dans une seconde partie on démontre les variations de f annoncées en $\mathbf{Q10}$.

On pourra réutiliser les résultats des questions traitées dans l'exercice 1 si elles se trouvent avant **Q5** pour la partie A, et avant **Q10** pour la partie B.

Partie A - Une formule pour f(n)

Q12. Rappeler la formule de factorisation de $a^n - b^n$, pour $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}^*$. En déduire que, pour $t \in [0; 1], n \in \mathbb{N}^*$:

$$1 - (-t)^n = (1+t) \sum_{k=0}^{n-1} (-1)^k t^k.$$

Q13. En déduire que, pour tout entier $n \ge 2$:

$$f(n) = (-1)^{n-1} \ln(2) + (-1)^n \sum_{k=0}^{n-2} (-1)^k \frac{1}{k+1}.$$

On pourra remarquer que, pour $n \ge 2$ et $t \in [0;1]$: $t^{n-1} = (-1)^{n-1}(-t)^{n-1}$.

Partie B - Variations de f

- **Q14.** Rappeler la définition de la décroissance d'une fonction g définie sur un intervalle I et à valeurs dans \mathbb{R} .
- **Q15.** Soit α et β deux nombres réels tels que $-1 < \alpha \le \beta$. Comparer, pour $t \in]0;1]$, t^{α} et t^{β} . En déduire que f est décroissante sur $]0;+\infty[$.